
Developers Like Hypermedia, But They Don't Like Web
Browsers

Leonard Richardson
Canonical USA

leonardr@segfault.org

ABSTRACT
Although desktop developers often have trouble consciously
understanding RESTful concepts like "hypermedia as the engine
of application state", this does not prevent them from intuitively
understanding client-side tools based on these concepts. However,
I encountered unexpected developer resistance after implementing
a security protocol I and other web developers had thought
uncontroversial: the most common mechanism for authorizing
OAuth request tokens. This developer resistance has implications
for many web services that share their authentication credentials
with a corresponding website.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services; H.5.4 [Information Interfaces and
Presentation]: Hypertext/hypermedia.

General Terms
Human Factors

Keywords
REST, hypermedia, OAuth, OpenID, developer relations

1. INTRODUCTION
I am the lead developer of lazr.restful, a Python library for
publishing RESTful web services in a Zope environment. The
biggest lazr.restful site is Launchpad,1 which hosts
collaborative development for the Ubuntu Linux distribution,
many of Ubuntu's component packages, and many unrelated open
source software projects.

In late 2008 I told three stories[9] recounting my advocacy of
RESTful design in the face of my colleagues' skepticism. A year
later, I present two stories about everyday usage: what happens
when outside developers start using a RESTful web service. The
first story is about being proved right by your users; the second
about what happens when the users rebel.

1 https://launchpad.net/

2. EVERYBODY LOVES HYPERMEDIA
By general consensus, the most difficult RESTful constraint to
grasp is "hypermedia as the engine of application state."[13]
People who have trouble understanding HATEOAS in the context
of web services understand it perfectly well in their everyday use
of computers. Web browsers are based on HATEOAS. Ordinary
computer users use an algorithm like this to accomplish
something on a website: (I've translated the algorithm into
RESTful terms.)

1. Retrieve a hypermedia representation of the home page.
2. Decode the representation to determine the current resource
state.
3. Based on the representation's semantic cues, decide which
hypermedia link or form is likely to bring you closer to your goal.
4. Click the link or fill out the form. Your browser will make
another HTTP request and the result will be another hypermedia
representation.
5. Go back to step 2 and repeat until the resource state is to your
liking.

Although developers understand how the web works as well as
non-developers, I've noticed two points of resistance when
translating this algorithm into the world of web services. The first
is in step 1, where the client starts at the well-known URI of the
home page. Many developers prefer to use predefined rules to
construct the URI of the object they "really" want to access, and
go directly there. A simple, well-known example is the web
service for the social bookmarking website del.icio.us, which
describes its web service in a human-readable document, listing a
number of URI "endpoints", each with a distinct function.[14] In
violation of the HATEOAS principle, these useful URIs are
nowhere to be found within the web service itself.

The second point of resistance is in step 3, with the idea that the
state of a resource includes meta-information about its capabilities
and its relationships to other objects. Some developers of web
services prefer to keep this information (especially the
information about capabilities) in human-readable form, and
regard machine-readable hypermedia depictions as redundant.

Resistance to the HATEOAS principle is implicit in the design of
many web services, and when I began work on the Launchpad
web service, this resistance took the form of pushback from my
colleagues. My perspective was not dismissed—I'd been hired
specifically for my web service expertise—but I got a clear
message that the Launchpad team's focus was on producing
results, not exploring arcane theories.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

WS-REST 2010, April 26 2010, Raleigh, NC, USA
Copyright © 2010 ACM 978-1-60558-959-6/10/04... $10.00

"Results" in this context meant the kind of user-friendly
development tools generally associated with SOAP/WSDL
services. On the server side, it meant an easy way for developers
to publish their existing data models as a web service. On the
client-side, it meant a Python client which makes web service
access idiomatically similar to local object access.

The competing vision for a Launchpad Python client was a library
hard-coded with information about the Launchpad web service's
"endpoints". This is a common design for custom web service
clients, but it has one big disadvantage: these clients are brittle.
They are written or generated based on a particular set of
assumptions about the structure of the web service, and when the
service changes, it violates those assumptions and the clients stop
working.

Because of this, open source web service clients like pyamazon
and pydelicious (for Amazon's ECS and the del.icio.us web
service, respectively) have undergone serial changes of
ownership. The web service changes and the library breaks, but
the original client developer no longer has any active projects that
use the web service. Someone with a more pressing need takes the
project over, and the cycle repeats—or else the project is
abandoned.

"Originally written by Mark Pilgrim, I took over maintenance
of the project in January 2004. and am now looking for
somebody else who would be interested in taking over the
maintenance of the project." [4]

"pydelicious broke on the last del.icio.us API update and I
was unable to contact the author so I'm posting the repaired
code here going forward." [8]

Rather than pedantically explain the value of HATEOAS to my
colleagues, I suggested that we exploit the hypermedia constraint
to quickly ship a library that wouldn't have this problem. I
proposed a client library whose exact capabilities would be
determined by hypermedia served by the server. This client would
present a Python interface corresponding to whatever hypermedia
it received, analogous to the way a web browser displays a
graphical representation of whatever hypermedia it receives.

My proposal became launchpadlib, a library that presents
Launchpad as a densely interconnected network of Python objects
similar to that found in an ORM library.2 This network of objects
corresponds exactly to the densely hyperlinked network of
representations available from the web service.

In launchpadlib, the simplest way to get from one object to
another is to follow a Python object reference. In web service
terms, this corresponds to following a link. Save operations
become PUT or PATCH requests, just as save operations in an
ORM become database commands. Delete operations become
DELETE requests. Here's some sample code:

>>> from launchpadlib import Launchpad

2 The launchpadlib library is actually a thin Launchpad-

specific wrapper around a more generic client library,
lazr.restfulclient.

>>> service_root = Launchpad.login_with(
... "my application",
... "https://api.launchpad.net/beta/")
>>> my_account = service_root.me
>>> print my_account.name
Leonard Richardson
>>> my_account.name = "L. Richardson"
>>> my_account.lp_save()

Once launchpadlib was released I made an interesting
discovery: a developer may have blind spots about the concept
"hypermedia as the engine of application state", but they will use
launchpadlib as if they did not have those blind spots. When
developers ask me for help and send me code snippets, I see them
using hypermedia as the engine of application state.

It would be hubristic to claim that launchpadlib is as easy to
use as a web browser, but it's the same kind of tool as a web
browser: a client programmed by hypermedia documents received
from the server, presenting a number of possible next steps based
on that hypermedia, each next step representing a change to the
application state.

Whence this ease of use? Well, every launchpadlib session
begins by constructing a "client" object. But this object doesn't
just handle authentication and network details. It retrieves a
hypermedia representation of the service's "home page". This
automatically pushes the developer past step one of the
HATEOAS algorithm, and past the first blind spot.

What about the second point of resistance, the reluctance to
follow a link? The launchpadlib 'client' object offers a set of
'next steps' derived from the hypermedia representation. It's easy
for a developer to load up a 'client' object in an interactive Python
session and explore those 'next steps' by using the dir()
command and following object references. This is the simplest
way to explore the web service: it effectively turns
launchpadlib into a web browser, allowing for "surfing".

The hypermedia algorithm is recursive, and once the developer
follows one link, they might as well keep following links until
they find what they're looking for. Once they're done exploring,
the developer doesn't have to write any new Python code—they
just have to clean up the code they wrote while exploring in the
interactive session.

Launchpad's URIs do follow certain patterns: the URI path
designating a 'person' resource is always "/~{username}". It's
possible to craft a URL and load the representation of that
resource directly into Launchpad, bypassing the normal workings
of hypermedia. This is the equivalent of hacking the URI in your
browser's address bar, and it's something a developer does a lot
when they have a blind spot in step one of the HATEOAS
algorithm. A web service that does not use hypermedia, like the
del.icio.us service, assumes that a developers will write code to
craft every URI their client accesses. When using the Launchpad
web services, some developers do craft URIs for performance
reasons, but I don't see it very often: it's easier to follow links
from the 'home page'.

The very complexity of the Launchpad web service makes the
hypermedia-based "surfing" style the more attractive option. If the

Launchpad web service only had a few kinds of resources, then a
stripped-down, endpoint-based web service like the del.icio.us
web service would be comprehensible. But actually the
Launchpad web service has over sixty kinds of resources.
Hypermedia is the best way to represent that diversity: it hides the
parts you're not interested in behind links you didn't click. And it
turns out developers love this style—as long as you don't tell them
that the secret ingredient is "hypermedia as the engine of
application state".

3. THE OAUTH REVOLT
Our developer-users ratified with their behavior our decision to
write a hypermedia-based service and client. But an influential
minority of our users rebelled against another one of our
decisions, simply refusing to use the system as designed. I
brokered a compromise which seemed promising enough to make
it into an early draft of this paper, but which turned out to be
untenable in the long term—untenable, it turns out, because of the
way the World Wide Web embodies the HATEOAS constraint.

The Launchpad web service protects its resources with OAuth
authentication[2], a request signing mechanism that depends on a
'access token' shared between client and server. An OAuth client
like launchpadlib can obtain an access token just by asking
the server, but an access token is useless until the end-user
authorizes it, explicitly delegating some of their human authority
to a computer program.

The OAuth standard does not define how the end-user is supposed
to authorize an access token. We defined a protocol similar to the
one used by other OAuth implementers like Twitter and Google,
and similar to proto-OAuth mechanisms defined by providers like
Flickr. [7, 1, 15] In our protocol, the launchpadlib application
hands control over to the end-user's web browser and opens a web
page on www.launchpad.net.

The web page explains to the end-user that an application 'foo'
(the application that's using launchpadlib) wants access to
their Launchpad account. The end-user may deny this request for
access, may grant the application full access, or may grant limited
access (like access to public data only). Once the end-user makes
their decision, the access token is authorized (or revoked) and
launchpadlib can begin using the Launchpad web service on
the end-user's behalf (or not).

Here's the rationale for handing control over to the web browser:
the end-user is in a tricky security situation. They're about to grant
a third-party application access to their Launchpad account. We
need to make it easy to distinguish between a legitimate
delegation of authority and a phishing attack—an attempt to
fraudulently obtain credentials by taking advantage of .people's
natural tendency to give computers whatever information they ask
for.

In my opinion, the best way to maintain the end-user's trust is to
handle the authentication from their web browser. The browser is
a trusted client. You already trust it with your passwords, and you
trust your address bar not to lie about which server a web page
came from. When the OAuth authentication process uses the web
browser, the end-user can bring to bear all their experience in
detecting web-based phishing attempts.

Launchpad bug #387297[11] summarizes what happened next.
Several developers who were using launchpadlib in their
third-party applications did not like this system, and routed around
it. First they performed experiments, sniffing the HTTP
interactions between launchpadlib, their web browser, and
the Launchpad website. Then they wrote their own programs that
asked for the end-user's username and password directly, and used
screen-scraping and canned HTTP requests to simulate the
browser-based authorization protocol we'd designed.

These developers weren't stupid. They knew how the system
worked—they had to understand it in order to simulate it. They
just didn't see the point. Stephan Hermann, a developer of a
Launchpad desktop client called Leonov, wrote this about
launchpadlib:[3]

[T]he login and approval of Launchpadlib was a bit
"strange" at the time when I looked at lplib. So I went and
wrote a little wrapper class, which does the authentication and
authorization (approval) automatically, without the need of a
browser or interactive methods.

From Hermann's point of view, the API provider (my colleagues
and me) did something "strange". Going along with our odd
design would have inconvenienced his users. So he wrote a
wrapper class that isolated the strange behavior. This let him
tightly integrate Launchpad authorization into his native UI
instead of jumping through bizarre browser-based hoops. The
problem is, we designed the system specifically to prevent what
Hermann wants to do.

Hermann isn't the only launchpadlib developer to rebel
against our design. At least one other desktop application, Ground
Control, uses a similar hack, and the ubuntu-dev-tools Ubuntu
package includes a reusable script called manage-
credentials.

The manage-credentials script takes a Launchpad
username, password, and access level as command-line
arguments. It logs in as the Launchpad user and grants itself a
certain level of access. Here's the relevant code: [5]

use hack
credentials =

Credentials(options.consumer)
credentials =

approve_application(credential,
 options.email,
 options.password,
 options.level,
 translate_api_web(options.service),
 None)

With this hack, the developer doesn't even have to let the end-user
decide how much access they want to grant! Whoever calls
manage-credentials can hard-code a certain value and get
read-write access to the end-user's private data, without even
telling the end-user there are other options.

Even this is not the worst of the desktop client depravity. While
researching bug #387297, I heard of applications written before

Launchpad provided a web service, applications which crawled
the end-user's Firefox profile looking for a saved Launchpad
password. [M. Korn, personal communication] These were well-
intentioned pieces of software designed to improve the end-user's
interactions with Launchpad. But from an architectural standpoint,
they were spyware.

Not all developers rebel against the browser-based security model.
The F-Spot photo manager features integration with Flickr's web
service, and rather than ask for your Flickr username and
password, it tells you to click a button. Clicking the button opens
up your web browser and begins Flickr's OAuth-like
authentication protocol.

Similarly, many launchpadlib developers used
launchpadlib's browser-based authentication protocol without
complaining (or at least without rebelling). But a prominent
minority preferred to write hacks, to productize the hacks into
scripts, and to include the scripts in official Ubuntu utility
libraries.

I must admit that launchpadlib did not have the smoothest
possible implementation of the credential-obtaining protocol (it's
much better now). And our documentation doesn't shout out the
security rationale for this protocol. It just says: "This lets your
users delegate a portion of their Launchpad permissions to your
program, without having to trust it completely."[10]

But even after reading an explanation of my point of view,
Stephan Hermann preferred his original design, the one we tried
to prohibit. In a comment on Launchpad bug #387297, he
wrote:[11]

 Actually, I don't think there is a difference between trusting a
 webbrowser and an UI client... The approach with username +
 password is bad, but having no other chance to avoid a browser
 for ui clients, I think our leonov workaround is the best thing
 someone can do.

I interviewed Markus Korn, author of the manage-
credentials script. He understands perfectly well how our
OAuth protocol works; he just doesn't buy into the security
rationale. When I asked him why he'd written manage-
credentials, he told me: "The idea was to not bother the user
with a web browser window when he is using a GUI." [M. Korn,
personal communication]

I asked Korn what he would have said in his own defense if I'd
confronted him while he was writing manage-credentials,
telling him that he was subverting Launchpad's security model. He
volunteered: "The user of my applications cares more about
smoothness than security, because he trusts me as the developer of
this app."[Korn, personal communication]

I also interviewed Martin Owens, the developer of the Ground
Control desktop interface to Launchpad. He didn't think browser-
based authentication was any more secure than a desktop
application that asks the end-user for their Launchpad password:
[M. Owens, personal communication]

The web browser is a large application with arbitrary display
and execution of code which comes from unknown and

untrusted sources. It's got a very large attack area. It's got a
fairly weak trust network... The user, I hope, would trust
applications installed on their computer, especially if those
applications are installed by default on the operating system
CD...

It's not surprising that desktop developers put more trust in
desktop applications than does a web developer like myself. If
you install an application on your computer, you give that
application as much implicit trust as you give your web browser.
In a modern Linux environment, applications are typically open
source and installed from trusted repositories, reducing the
possibility that a given application will contain spyware.

Objectively speaking, Hermann, Korn, and Owens have the final
say. The Launchpad web service was designed for toolmakers like
them. Although hundreds of people use the Launchpad web
service, they use it through applications like Leonov and Ground
Control.

Because of this I decided to compromise with the toolmakers. I
didn't like the idea of each desktop developer independently
sniffing the token authorization protocol we'd designed for a web
browser, and writing their own imitation browser to run through
that protocol. Eventually one of those developers would make a
mistake, leaking a Launchpad user's password or storing it in an
insecure location. I also didn't like the way some of the imitation
web browsers chose their own level of access to Launchpad,
instead of leaving that decision up to the end-user.

My inspiration was pinentry, a suite of small desktop
applications (part of the GnuPG project) which "read passphrases
and PIN numbers in a secure manner." [6] The pinentry suite
centralizes passphrase-gathering functionality in one simple,
easily audited code base. I wrote a pinentry-like program, a
canonical desktop application for taking the user's Launchpad
password and authorizing an OAuth access token. Although this
program duplicates the behavior of a web browser, I could at least
keep every desktop developer from developing their own
imitation browser.

I planned to package three different versions of this pinentry-
like program with launchpadlib: one to blend in with GTK+
GUIs, one for Qt-based GUIs, and one for console applications.
This would meet Korn's goal of "not bother[ing] the user with a
web browser window." Instead of handing control over to the web
browser, a developer would be able to hand control to a native
desktop application that closely resembled their own desktop
application.

I wrote a console-based application, launchpad-
credentials-console, and was talking with desktop
developers interested in writing GUI versions, when all my work
was rendered obsolete by a change to the Launchpad website.

Up to this point, Launchpad was like most websites in having a
special "login" page, which invited the end-user to type their
username and password into an HTML form. My launchpad-
credentials-console authenticated with Launchpad by
constructing an HTML form submission and POSTing it to the
appropriate Launchpad URL. Leonov, Ground Control, and

manage-credentials also authenticated with Launchpad
using constructed form submissions.

In March 2010, the Launchpad login page disappeared.
Launchpad users no longer give their username and password
directly to Launchpad; they are now redirected to a OpenID
provider, the Launchpad Login Service, and they authenticate
with that OpenID provider. This is more convenient for the end-
user, but it's disastrous for launchpad-credentials-
console and all similar applications.

Consider a human being using their web browser to visit
Launchpad, on the day after the old login page disappears. The
home page still features an HTML link in the upper right-hand
corner that says "Log In / Register". Clicking that link takes the
end-user through a process in which they fill out HTML forms
and submit them. At the end of the process, the end-user finds him
or herself logged in to Launchpad.

On this day, the user's browser sends drastically different HTTP
requests than the day before, but the differences between the old
login procedure and the new one are encapsulated in hypermedia.
When the end-user is using a hypermedia-aware client (ie. a web
browser), the login system can change drastically and the user will
not suffer anything worse than possible confusion. The
"hypermedia algorithm" for obtaining a given application state
still works.

Now consider a human being trying to run a launchpadlib
script the day after the login procedure changes. At the crucial
moment, when the end-user needs to authorize an OAuth request
token, launchpadlib opens the end-user's web browser. The
end-user is sent through the (new) login procedure and then gets a
chance to authorize an OAuth request token or refuse
authorization. Again, the change to the login procedure is
encapsulated in hypermedia, which a web browser can always
understand and a human being can always navigate.

Finally, consider someone trying to log in to Launchpad using
launchpad-credentials-console. The end-user types
their username and password into the console application, which
sends a constructed HTML form submission. But Launchpad no
longer recognizes that form submission! Launchpad is no longer
in charge of handling login attempts; it can only redirect people to
an OpenID provider. The launchpad-credentials-
console program broke when the login procedure changed, in
the same way pyamazon broke when Amazon's ECS service
changed.

Leonov, Ground Control, manage-credentials, and
launchpad-credentials-console all broke on the same
day and for the same reason. These programs hid the workings of
hypermedia ("arbitrary display... from unknown and untrusted
sources") from the end-user, and now they're paying the price.

Can these applications be made to work again? In the short run,
certainly. It's just HTTP. A developer can sniff the way browsers
interact with the Launchpad Login Service, find the point at which
the username and password are sent to the server, and teach a
program to send the same request to the same URL.

In the long run, a hypermedia-oblivious program like
launchpad-credentials-console cannot be made to
work. The problem is not just that the login procedure might
change again. We know the login procedure will change again,
and it will change in a way that makes programs like
launchpad-credentials-console impossible.

As of March 2010, Launchpad only accepts OpenID identifiers
from one source: the Launchpad Login Service. In the future,
Launchpad will be a full-fledged "relying party". End-users will
be able to log in to Launchpad using an identifier from any
OpenID provider: the Launchpad Login Service, the Ubuntu
Single Sign On Service, Google, LiveJournal, MySpace, or any
other.

When a user tries to log in to Launchpad, they will temporarily be
redirected to their OpenID provider and asked to authenticate with
their provider. Each provider has its own way of authenticating
the end-user. Most OpenID providers use username-password
combinations, as Launchpad used to and as the Launchpad Login
Service does now, but each provider serves slightly different
HTML forms and accepts slightly different HTTP requests. And
nothing prevents an OpenID provider from authenticating with an
x509 certificate, or defining an authentication procedure that
makes the end-user solve a CAPTCHA or digitally sign a
challenge string.

A web browser supports nearly any protocol for authorizing an
OAuth access token. The differences between protocols are
encapsulated in hypermedia and a human can navigate any
protocol using the same, general hypermedia algorithm.
Programming a hypermedia-oblivious client with all these
possibilities is simply impossible. Once Launchpad's OAuth token
authorization protocol allows authentication with an arbitrary
OpenID provider, that authentication must take place in a web
browser.

Desktop developers I've spoken with are understandably unhappy
that their applications are broken. [Owens, personal
communication.] But launchpadlib's normal browser-based
mechanism for authorizing OAuth tokens still works. The
Launchpad team is working with Ubuntu desktop developers on a
desktop-wide solution that should reduce the number of times an
end-user has to use their web browser, but because it's very early
in development, this paper is not a good place to discuss it.[12]

4. CONCLUSIONS AND
RECOMMENDATIONS
When I designed the Launchpad web service, I expected one of
my tasks would be developer education. After all, when designing
the service I'd had to convince my colleagues of the benefits of
RESTful design. But thanks to a hypermedia-aware client-side
library, I found little conceptual resistance from developers. Our
experience with web browsers shows that you don't have to
understand "hypermedia as the engine of application state" to take
advantage of it.

I did experience developer resistance to HATEOAS when it came
to hypermedia experienced through the web browser. There, the
problem wasn't the hypermedia; it was the browser. Although
relatively few web services protect their resources with OAuth, I

predict that any web service that does will find its developers
writing libraries along the lines of manage-credentials.

I propose a natural experiment: as I write, a client for the Twitter
web service can authenticate its requests using an OAuth token, or
by providing a Twitter username and password with HTTP Basic
Auth. Twitter developers plan to deprecate Basic Auth starting in
June 2010. [7] I predict that as Basic Auth is deprecated, client-
side Twitter hackers will resist Twitter's OAuth token
authorization protocol, just as client-side Launchpad hackers
resisted Launchpad's similar protocol. How the Twitter developers
will react to this resistance is an open question—especially if they
ever intend to make Twitter an OpenID relying party.

It was frustrating to see launchpad-credentials-
console suddenly break, along with all the other hypermedia-
oblivious ways of authorizing Launchpad's OAuth tokens, but it
also provided an object lesson in the value of hypermedia-aware
clients. Regardless of desktop developers' reservations about the
web browser, it's the only client that can authenticate with an
arbitrary OpenID provider. More seriously, I think this problem
illustrates a general obstacle towards OpenID adoption on
websites that also provide web services.

Consider an alternate universe in which, by the beginning of 2010,
Launchpad's web service somehow became as popular as
Twitter's. Instead of four desktop clients that simulate a web
browser to authenticate Launchpad's OAuth tokens, there would
be dozens. Instead of an audience of a few hundred software
developers, our web service would be used by millions of
ordinary people.

What happens at this point if we decide to make Launchpad an
OpenID relying party? We can't break dozens of clients and
confuse millions of people. But the existing, hypermedia-
oblivious clients won't allow a user to authenticate using an
OpenID identity from (eg.) MySpace. Such a user would have to
get a Launchpad account to use a web service client, defeating the
purpose of making Launchpad an OpenID relying party.

When we saw that launchpad-credentials-console
was broken, the Launchpad team had an internal discussion:
should we fix the hypermedia-oblivious clients and forget about
making Launchpad an OpenID relying party, or should we go
ahead with our OpenID plans and abandon launchpad-
credentials-console? This decision would have affected
the entire Launchpad website, not just the web service.

For the sake of being good OpenID citizens, we decided to
abandon the hypermedia-oblivious clients. The more popular a
web service is, and the more hypermedia-oblivious clients there
are in active use, the more difficult it will be to decide to make the
corresponding website an OpenID relying party.

If your web service users authenticate using the same credentials
they use on some corresponding website, give some thought to
that site's future. If you protect your web service's resources with
OAuth, you should decide now whether you ever want that site to
be an OpenID relying party. If you use HTTP Basic Auth or some
other authentication mechanism, make the same decision—and

consider how your web service authentication mechanism might
need to change.

5. ACKNOWLEDGMENTS
Thanks to Markus Korn and Martin Owens for explaining the
desktop developer's perspective. Thanks also to my sister, Rachel
Richardson, for formatting this paper.

6. REFERENCES
[1] Eric Bidelman
 http://code.google.com/apis/gdata/articles/oauth.html

[2] E. Hammer-Lahav, Ed. "The OAuth 1.0
 Protocol".
 http://tools.ietf.org/html/draft-hammer-oauth-10

[3] S. Hermann, "Some internals...".
 http://www.sourcecode.de/content/some-internals

[4] M. Josephson,
 http://www.josephson.org/projects/pyamazon/

[5] M. Korn, "manage-credentials". Source code hosted in bzr
 repository. lp:ubuntu-dev-tools/manage-credentials.

[6] Werner Koch
 http://www.gnupg.org/related_software/pinentry/index.en.html

[7] Raffi Krikorian et al.
 http://apiwiki.twitter.com/OAuth-FAQ

[8] G. Pinero et al.
 http://code.google.com/p/pydelicious/

[9] L. Richardson, "Justice Will Take Us Millions of Intricate
 Moves".
 http://www.crummy.com/writing/speaking/2008-QCon/

[10] L. Richardson et al,
 https://help.launchpad.net/API/launchpadlib

[11] L. Richardson, et al. "manage-credentials should not ask for
 Launchpad password directly".
 https://bugs.edge.launchpad.net/launchpadlib/+bug/387297

[12] L. Richardson et al, "Trusted credential-management
 apps are broken and doomed",
 https://bugs.launchpad.net/launchpadlib/+bug/532055

[13] J. Webber, "HATEOAS - The Confusing Bit from REST".
 http://jim.webber.name/downloads/presentations/2009-05-
 HATEOAS.pdf

[14] Unknown author
 http://delicious.com/help/api

[15] Unknown author
 http://www.flickr.com/services/api/auth.spec.htm

